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Abstract. Kernel density estimate is considered as the main nonparametric methods to estimate the probability

density function. In this investigation we study the rate of convergence for two measures of deviation between

the probability density function and the kernel probability density estimate. Rate of almost sure convergence are

given. The results are extendable in straight forward way to multivariate case.
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1 Introduction

Kernel density estimation is one of the classical topics in nonparametric statistics, starting from
the work of Rosenblatt (1956) and Parzen (1962), nonparametric methods for density estimation
were developed and applied to many areas in statistical inference. Large sample properties, such
as consistency and asymptotic distributions are interesting to justify the use of these methods.
One criterion for strong consistency is to measure the deviation of the estimate f̂(x) from the
true density f(x). Bickel and Rosenblatt (1973) proposed the measure

J2
1n =

∫
[f̂(x)− f(x)]2dx. (1)

An application of density estimation is to estimate the functional θ =
∫
f2(x)dx. The functional

θ is important in many nonparametric inferential problems as it appears as the dominant term in
many relative efficiencies expressions of rank statistics. An estimate of θ may be θ̂ =

∫
f̂2(x)dx

or
ˆ̂
θ =

∫
f̂(x)dFn(x), where Fn(x) denotes the empirical distribution function. Here we shall be

concerned with the functional

J2n = |
∫

f̂2(x)dx−
∫

f2(x)dx|, (2)

and

J∗
2n = |

∫
f̂(x)dFn(x)−

∫
f2(x)dx|. (3)
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In the above and all what follows, whenever no limits of an integration are given it is taken over
(−∞,∞).

The kernel method is one of the most successful techniques for density estimation which can be
described briefly as:

Let X1, ..., Xn be a random sample from f(x). Let k be a known probability density function
satisfying the following conditions: k is right continuous, supuk(u) < ∞, and |u|k(|u|) → 0 as
|u| → ∞. Furthermore, let {an} be a sequence of real numbers such that an → 0 as n → ∞.
The kernel estimate of f(x) using k(u) is given by:

f̂(x) =
1

an

∫
k(

x− y

an
)dFn(y)

=
1

an

n∑
j=1

k(
x−Xj

an
). (4)

Kernel density estimate has application in Engineering, Agriculture, Computer Science and other
fields, for example Parente et al. (2020) used Kernel density estimates for sepsis classification
where Severe sepsis is a leading cause of intensive care unit (ICU) admission, Hewitt, et al
(2022) used kernel density estimates satellite tag data wher they conditional distributions for
quantitative comparison of pre- and post-exposure behavior. Taaffe, et al. (2021) implement
kernel density estimation for the probability distribution of surgery duration.

We shall study the rates of convergence in strong consistency of J2
1n, J2n, and J∗

2n above.
Devroye (1983) studied the L1 distance as a measure of closeness between f̂(x) and f(x). Kundu
and Martinsek (1997) proposed procedures for bounding the L1 distance. Ahmad and Mugdadi
(2006) used the wieghted Hellinger distance as an error criterion to evalute the bandwidth for
density estimation, later, Mugdadi and Anver (2016) used the weighted Hellinger distance as
measure of error for the Multivariate kernel density estimate. Cheng (2019) considered under
Lp-norm, the global property for the error density estimator with censored survival data. Rao
(2010) studied the problem of estimation of density function by the method of delta sequences
for functional data, Nadar (2010) studied the local convergence rate for the mean square error
for the multivariate density estimation when the density function satisfies certain conditions.
Karunamuni et al (2006) investigated the convergence properties of an adaptive kernel density
estimation under some regularity conditions. recently Ahmad and Mugdadi (2020) obtianed the
mean square error as a measure of error for for the L-estimator.

Ahmad (1976 a) showed that J2
1n → 0 with probability one (w.p.1) under certain conditions

while Ahmad (1976 b) showed that J2n → 0 and J∗
2n → 0 w.p.1 as n → ∞. The following result

due to Kuelbs (1977) is important in the sequel. The proof of this Theorem rests on a result of
Kuelbs (1978).

Theorem 1. Assume that k is a function of bounded variation such that
∫
|u|k(u)du < ∞. Let

f satisfy the condition

supx|f(x)|+ supx ̸=y
|f(x)− f(y)|

|x− y|
< ∞. (5)

Then

(i) supx|f̂(x)− Ef̂(x)| = O(

√
log(log(n))

n a−1
n ),

(ii) M = supnsupx|f̂(x)− Ef̂(x)|
√

n
log(log(n))an is a random variable such that for

all β > 0, E(eβM
2
) < ∞,

(iii) For an = n−1/4,

supx|f̂(x)− f(x)| = O(n−1/4
√

log(log(n)),
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(iv) For every β > 0, and if

√
log(log(n))

n a−1
n → 0 as n → ∞,

limn→∞E(eβsupx|f̂(x)−f(x)|2) = 1.

Remark 1. If we allow stronger conditions, the rate in (iii) may be improved. In fact if we as-
sume that f(x), f ′(x) and f ′′(x) are all uniformly bounded, if k is a function of bounded variation
such that

∫
uk(u)du = 0 and

∫
u2k(u) < ∞ then with an = n−1/6 we have supx|f̂(x)− f(x)| =

O(n−1/3(log(log(n)))1/2), see Theorem D of Kuelbs (1977).

In Section 2 we shall obtain strong consistency analogous results for J2
1n, J2n, and J∗

2n. It
should be noted here that the proofs extend to the multivariate case without difficulty.

2 Main results

Theorem 2. Assume that the conditions of Theorem 1 are satisfied and that f(x) is square
integrable. Let J2

1n =
∫
[f̂(x)− f(x)]2dx and L2

2n =
∫
[f̂(x)− Ef̂(x)]2dx. Then

(i) L1n = O(
√

log(log(n))
nan

).

(ii) If M = supnL1n

√
log(log(n))

na2n
, then E(exp(βM2)) < ∞.

(iii) If an = n
−1
4 , then J1n = O(n

−1
4

√
log(log(n))).

(iv) For each β > 0, log(log(n))
na2n

→ 0 as n → ∞, E(exp(βJ2
1n) → 1 as n → ∞.

Proof. It follows from Theorem 1 of Ahmad (1976 a), that

L2
1n ≤ 4δ[supx|f̂(x)− Ef̂(x)|]2 (6)

for some δ > 0, thus L1n ≤ Csupx|f̂(x)− Ef̂(x)|. Hence (i) and (ii) follow from (i) and (iii) of
Theorem 1. From relation (2.12) of Ahmad (1976 a) we have,

[

∫
(Ef̂(x)− f(x))2dx]1/2 ≤ 1

an

∫
k(

v

an
)[

∫
(f(x− v)− f(x))2dx]1/2dv. (7)

Now, ∫
[f(x− v)− f(x)]2dx ≤ supx|f(x− v)− f(x)|

∫
|f(x− v)− f(x)|dx.

Let δ > 0 be any real number and set N(δ) = (−∞,−δ] ∪ [δ,∞). Thus∫
[f(x− v)− f(x)]dx ≤ 2δsupx|f(x− v)− f(x)|+

∫
N(δ)

|f(x− v)− f(x)|dx

≤ 2δsupx|f(x− v)− f(x)|+
∫ δ

−δ
[f(x− v)− f(x)]dx

+2

∫
N(δ)

f(x)dx

≤ 4δsupx|f(x− v)− f(x)|+ 2

∫
N(δ)

f(x)dx, (8)

since f is a probability density function, then for every ϵ > 0 such that
∫
N(δ) f(x) < ϵ, and since

ϵ is arbitrary we have ∫
[f(x− v)− f(x)]dx ≤ 4δsupx|f(x− v)− f(x)|.
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Hence

(

∫
[Ef̂(x)− f(x)]2dx)1/2 ≤ C

an

∫
k(

v

an
)supx|f(x− v)f(x)|dxdv

≤ C1

an
, (9)

since
∫
|u|k(u)du < ∞ and supx|f(x−v)−f(x)|

|v| < ∞ for every |v| > 0. Hence (ii) and (iv) follow

from (i) and (ii). This concludes the proof.

Theorem 3, to follow, gives analogous results about J2n, while Theorem 4 gives results
corresponding the modified version J∗

2n = |
∫
f̂(x)dFn(x)−

∫
f2(x)dx|.

Theorem 3. Let θ =
∫
f2(x)dx and θ̂ =

∫
f̂2(x)dx where f̂(x) is as given in (4), and assume

that the conditions of Theorem 2 are satisfied. Then

(i) |θ̂ − Eθ̂| = O(

√
log(log(n))

n
1
an
).

(ii) If M = supn|θ̂ − Eθ̂|
√

log(log(n))
na2n

, then for any β > 0, E(exp(βM2)) < ∞.

(iii) If an = n
−1
4 , then J1n = O(n

−1
4

√
log(log(n))).

(iv) If loglog n
na2n

→ 0 as n → ∞, then E(exp(βJ2n)) → 1 as n → ∞.

Proof. Note that

|θ̂ − Eθ̂| ≤
∫

|f̂(x)− Ef̂(x)|f̂(x)dx+

∫
|f̂(x)− Ef̂(x)|Ef̂(x)dx

≤ 2supx|f̂(x)− Ef̂(x)|, (10)

since
∫
Ef̂(x)dx =

∫
f̂(x)dx = 1. Thus (i) and (ii) follow from (i) and (ii) of Theorem 1. Next,

J2n = |θ̂ − θ|

≤
∫

|f̂(x)− f(x)|f̂(x)dx+

∫
|f̂(x)− f(x)|f(x)dx

≤ 2supx|f̂(x)− f(x)|. (11)

Thus (iii) and (iv) follow from (iii) and (iv) of Theorem 1.

Theorem 4. Let
ˆ̂
θ =

∫
f̂(x)dFn(x) and θ̃ =

∫
Ef̂(x)f(x)dx, and assume that the conditions of

Theorem 1 are satisfied. Then

(i) | ˆ̂θ − θ̃| = O(

√
log(log(n))

n
1
an
).

(ii) If M = supn| ˆ̂θ − θ̃|
√

log(log(n))
na2n

, then for any β > 0, E(exp(βM2)) < ∞.

(iii) If an = n
−1
4 , then J∗

2n = | ˆ̂θ − θ̃| = O(n
−1
4

√
log(log(n))).

(iv) If log(log(n))
na2n

→ 0 as n → ∞, then for every β > 0, E(exp(βJ∗
2n)) → 1 as n → ∞.

Proof. Note that

| ˆ̂θ − θ̃| ≤
∫

|f̂(x)− Ef̂(x)|dFn(x) + |
∫

Ef̂(x)d(Fn(x)− F (x))|

≤ supx|f̂(x)− Ef̂(x)|+ C

an
supx|Fn(x)− F (x)|

≤ D

an
supx|Fn(x)− F (x)|, (12)
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where the second term in the second inequality is obtained by integration by parts and since
(cf. Nadaraya (1965))

supx|f̂(x)− Ef̂(x)| ≤ D

an
supx|Fn(x)− F (x)|, (13)

the third inequality follows with some constant D > 0. Thus, (i) and (iIi) follows exactly as in
the proof of Theorem 1 (cf. Kuelbs (1977)). Next (ii) and (iv) follow directly as in (ii) and (iv)
of Theorem 1 (cf. Kuelbs (1978)) with the aid of the inequality

|θ̃ − θ| ≤
∫

|Ef̂(x)− f(x)|dF (x) ≤ supx|Ef̂(x)− f(x)|. (14)

The Theorem is proved.

Acknowledgment: The authors thank the managing editor and the referees for their
remarks on the earlier version of this article which improve the last version of the paper.
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